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Abstract

In-plane bending vibrations of a beam rotating with a periodically fluctuating speed are considered. The
partial differential equation of motion is discretisized via Galerkin’s method and a set of Mathieu–Hill
equations is obtained. The constant speed rotation problem is reviewed and its reflections onto the
fluctuating speed problem are underlined. Dynamic stability analysis is performed via a monodromy matrix
method and a generalized Bolotin method. Examples of stability charts are worked out reflecting stability’s
dependence on various pairs of system parameters.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Since the pioneering work of Southwell and Gaugh [1] the vibration problem of rotating beams
has been a subject of extensive research due to a number of very important applications such as
helicopter and turbine blades, appendages of spinning satellites and also perhaps to its challenging
mathematical aspect appealing to mathematical physicists.
Along with the fundamental problem of determining the natural frequencies of the in and out-

of-rotation plane bending vibrations of centrically or eccentrically clamped beams [1–14], two
subsidiary problems have been addressed in the literature. These are the buckling problem of
eccentrically clamped, inward-oriented beams, [6,9,11,12,15,16–21], and the ‘‘tuning’’ problem
see front matter r 2004 Elsevier Ltd. All rights reserved.
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[6,14]. Various analysis methods have been used in these studies, among which are the method of
successive approximations [15], Rayleigh–Ritz method [8], Galerkin’s method [6,14,16],
perturbation methods [4,9,11,17,18,20], integrating matrix methods [19,21], Frobenius series
[7,10,12] and finite element method [5,13].
A common feature of the above-referenced studies is that they all assume the beam to rotate at

a constant rate. Al-Nassar and Al-Bedoor [22] have, on the other hand, recently attracted
attention to the effect of the driving shaft’s torsional vibrations on the bending vibrations of
rotating blades. They have shown through numerical simulations of a single-degree-of-freedom
simplified model that the vibrations of the shaft may be a source of instability for the blades.
Inspired by the above work, the present study considers the effect of a speed fluctuation in the

driving shaft on the in-plane bending vibrations of rotating blades. The blades are assumed to be
possibly eccentrically clamped uniform Euler–Bernouilli beams made of a Kelvin–Voigt material
and a discrete mathematical model for their bending vibrations is obtained through Galerkin’s
method. It is shown that the dynamical behaviour of the system is governed by a set of
Mathieu–Hill equations and, consequently, that loss of dynamic stability is to be expected for
certain combinations of system parameters. Along with outward-oriented beams, inward-oriented
ones are also considered for which loss of static stability (buckling) is also possible. In order to
facilitate getting insight into the peculiarities of the fluctuating speed problem, certain aspects of
the constant speed problem are first highlighted. Stability analysis is then performed for the
fluctuating speed problem through a generalized Bolotin method given by Turhan [23] and a
monodromy matrix method. Stability analysis results are presented in the form of stability charts
reflecting stability’s dependence on various selected pairs of system parameters.
2. Formulation of the problem

2.1. Equation of motion

The lateral vibrations of a uniform Euler–Bernouilli beam made of a Kelvin–Voigt
material subjected to a distributed force whose axial and transversal components are given,
respectively, as f xðx; tÞ and f yðx; tÞ can be shown to be governed by the integro-partial differential
equation
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where EI is the flexural rigidity, A the cross-section area, r the mass density, ‘ the length of the
beam and Z is a viscous damping coefficient.
Eq. (1) can be used to obtain the equation of motion of the in-plane lateral vibrations of the

rotating beam of Fig. 1a. To this end, it suffices to define f xðx; tÞ and f yðx; tÞ as the inertia force
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Fig. 1. Rotating beam (a: oriented outward; aX0; b: oriented inward; ao0).
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components acting on a segment of unit length situated at point x of the beam, vis.
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dO
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Now, assume that the rotation speed fluctuates sinusoidally with a frequency n about a mean
value O0 so that

OðtÞ ¼ O0 þ O1 sin nt; ð4Þ

neglect the nonlinear fourth and fifth terms of Eq. (3), put in non-dimensional form and obtain
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as the partial differential equation of motion. The accompanying boundary conditions are those
of a fixed-free beam

vð0; tÞ ¼ v0ð0; tÞ ¼ v00ð1; tÞ ¼ v
000

ð1; tÞ ¼ 0: ð8Þ

In Eqs. (5) and (8) overdots denote differentiation w.r.t. t and primes denote differentiation
w.r.t. u. Eq. (5) can be used to study the vibrations of both outward and inward-oriented beams
(Fig. 1a and b) by adjusting the sign of a: In the first case one has aX0 and in the second ao0: Let
one also note that d of Eq. (6) is nothing but a coefficient of fluctuation; a concept familiar to
those acquainted with the problems of dynamics of machinery [24].

2.2. Galerkin discretization

The boundary-value problem defined in Eqs. (5)–(8) can be approximated by a finite set of
ordinary differential equations by means of Galerkin’s method. To this end, introduce the n term
Galerkin series

~vðu; tÞ ¼
Xn

i¼1

giðtÞjiðuÞ; ð9Þ

for the nth order approximate solution, use the orthonormal set of eigenfunctions

jiðuÞ ¼ cosh liu � cos liu �
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sinh li þ sin li

ðsinh liu � sin liuÞ ð10Þ

of a stationary Euler–Bernouilli beam with boundary conditions (8) as the set of comparison
functions (the first five eigenvalues li are given in Appendix A), substitute ~v for v from Eq. (9) into
Eq. (5) and orthogonalize the latter with respect to the set jjðuÞ by requiringZ 1

0
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The differential equation set (12) can conveniently be written in vector–matrix form as
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where A and B are n
 n symmetrical matrices and c and d are n-dimensional vectors whose
elements are defined in Eq. (13) and numerically given in Appendix A for n=5, K is an n
 n
diagonal matrix with elements Lij ¼ lidij ; I is the n
 n unit matrix, and gðtÞ is an n dimensional
vector of unknowns with elements giðtÞ:
Eq. (14) constitutes a system of linear ordinary differential equations with 2p periodic

coefficients, or, a system of Mathieu–Hill equations.
3. A review of the constant speed problem

Before embarking upon the study of the fluctuating speed problem, a brief review of the
undamped, constant speed problem will prove to be helpful. To this end put z ¼ 0; d ¼ 0 and
o ¼ 1 in Eq. (14) to obtain

€gðtÞ þ ½K4
� b20ðaAþ Bþ IÞ	gðtÞ ¼ 0 ð15Þ

as an approximate discretized mathematical model for the vibrations of a beam rotating at a
constant dimensionless rate b0:
3.1. Natural frequencies

Requiring Eq. (15) to have a solution in the form gðtÞ ¼ Geim
2t (harmonic in time) where G is an

n-dimensional unknown amplitudes’ vector, one is led to the eigenvalue analysis problem

det½K4
� b20ðaAþ Bþ IÞ � m4I	 ¼ 0 ð16Þ

the solution of which gives the dimensionless natural frequencies mi of the rotating beam. The
radial natural frequencies oi are then calculated from

oi ¼ m2i o
�; i ¼ 1; 2; . . . ; n; ð17Þ

where o� is as given in Eq. (7). Fig. 2 shows the variation of the first four eigenvalues mi with b0
for various values of the offset ratio a; as calculated from Eq. (16) with n=10. Fig. 2 (and also Eq.
(16)) shows that mi ¼ li for b0 ¼ 0; as it should. As can be seen in this figure, all the eigenvalues of
the outward-oriented beam ðaX0Þ increase with both b0 and a; this obviously being due to the
tensile and restoring effect of the centrifugal forces. But the situation is not that clear for the
inward-oriented beam ðao0Þ for which compressive and destabilizing effects of the centrifugal
forces come in to play. In this case, eigenvalues may increase or decrease with increasing b0;
depending on the value of a and also on the considered range of b0: A decreasing eigenvalue
vanishes at a certain critical combination of the parameters b0 and a; beyond which loss of static
stability (buckling) occurs in the corresponding mode.
3.2. Buckling of inward-oriented beams

The line separating the statically stable and unstable (buckling) regions on a b02a plane can be
obtained from Eq. (16) by putting m ¼ 0 and recasting the resulting problem into the form of an
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Fig. 2. Variation of the first four eigenfrequencies with the rotation speed.
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eigenvalue analysis problem giving a in terms of b20 as

det A�1 1

b20
K4

� B� I

 !
� aI

" #
¼ 0 ð18Þ

or, alternatively, an eigenvalue analysis problem giving b20 in terms of a as

det½ðaAþ Bþ IÞ�1K4
� b20I	 ¼ 0: ð19Þ

Fig. 3a shows buckling limits (lower boundaries of statically unstable parameter regions) of the
first seven modes and Fig. 3b that of the first mode alone, as calculated from Eq. (18) with n=10.
It is possible to obtain a closed form approximate expression for the first mode buckling limit
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from Eq. (18) or (19) with n=2. Using the latter one has

b0ðaÞ ¼ 5:695145

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
aþ 0:185826þ 0:757884

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 0:110970aþ 0:027575

p

a2 þ 0:723457aþ 0:043919

s
: ð20Þ

A literature survey revealed a number of similar formulae, their performance is compared [25],
and the best is found to be the below-reproduced formula due to Peters and Hodges [20]

aðb0Þ ¼ �
2
ffiffiffi
2

p

pb0
arctg

0:1319937523pb0
2
ffiffiffi
2

p


 �
þ
7:8373474390

b20

" #
: ð21Þ

Eqs. (20) and (21) are also plotted in Fig. 3b but the plot of Eq. (21) is not visible as it
superimposes with that of Eq. (18) with n=10.

3.3. Tuning

As the natural frequencies of the rotating beam depend on the parameters b0 and a; parameter
combinations may arise for which O0 ¼ oi; i ¼ 1; 2; . . . ; where O0 is the shaft velocity and oi is the
ith radial frequency of the beam defined in Eq. (17). This phenomenon is called tuning. Tuning is
important because when it is present, any periodic forcing effect due to the rotation of the shaft
will be resonant. To obtain tuning conditions put m4 ¼ b20 into Eq. (16) and recast the resulting
problem into the form of an eigenvalue analysis problem giving a in terms of b0 as

det A�1 1

b20
K4

� B� 2I

 !
� aI

" #
¼ 0 ð22Þ

or, alternatively, an eigenvalue analysis problem giving b0 in terms of a as

det½ðaAþ Bþ 2IÞ�1K4
� b20I	 ¼ 0: ð23Þ
Fig. 3. Static stability (buckling) boundaries for inward-oriented beam (a, first 7 modes; b, first mode).
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A closed form approximate expression for the locus of the parameter combinations for which
first mode’s tuning occurs can be obtained from, say, Eq. (22) with n=2. This yields

aðb0Þ ¼ 0:019391�
32:434674� 24:581725

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:039434b20 þ 0:000505b40

q
b20

: ð24Þ

Fig. 4 shows tuning conditions for the first three modes as obtained from Eq. (22) with n=10,
and along with, the results of Eq. (24). It can be seen in this figure that tuning of the first mode is
always possible for inward-oriented ðao0Þ beams, and up to a certain value of a for outward-
oriented ðaX0Þ ones (an estimate for this value is a � 0:6554 according to Eq. (22) with n=10 and
b0 ! 1; see also Ref. [14]).
Unlike the natural frequencies calculation and buckling problems, which will prove to be

helpful in getting insight into some peculiarities of the dynamic stability analysis problem of
fluctuating speed beams, the tuning problem will not need to be referenced further. It is included
here only for the purpose of completing the panorama of the constant speed problems.
4. Dynamic stability analysis

Systems whose dynamic behavior is governed by Mathieu–Hill equations such as Eq. (14) are
referred to as parametrically excited systems and, as such, are subject to special resonance
conditions peculiar to them. The determination problem of these conditions is called dynamic
stability analysis and requires the homogeneous part of the equation to be considered. Thus
consider

€gðtÞ þ
z
o

K4 _gðtÞ þ
1

o2
K4

� bðtÞ2ðaAþ Bþ IÞ
� �

gðtÞ ¼ 0: ð25Þ
Fig. 4. Tuning of the first three modes (o o o, Eq. (24)).
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Stability of the solutions of Eq. (25) will be studied via two alternative methods. These methods
are briefly described below.

4.1. The monodromy matrix method

A state-space representation of system (25) may be given as

_u ¼ Hðz;o; b0; d; a; tÞu; Hðz;o; b0; d; a; tÞ ¼ Hðz;o;b0; d; a; tþ 2pÞ; ð26Þ

where u is a 2n-dimensional vector defined as uðtÞ ¼ f gðtÞ _gðtÞ gT and H is a 2n
 2n-dimensional
matrix defined as

Hðz;o; b0; d; a; tÞ ¼
0 I

� 1
o2 K4

� bðtÞ2ðaAþ Bþ IÞ
� �

� z
oK4

" #
: ð27Þ

According to the Floquet theory [26], a fundamental solutions’ matrix of system (26) can be
expressed as

UðtÞ ¼ QðtÞeRt; ð28Þ

where QðtÞ is a 2p periodic matrix and R is a 2n
 2n constant matrix. It then follows that
Uðt0 þ 2pÞ ¼ Uðt0ÞS with ð1=2pÞ ln S ¼ R: If the fundamental matrix is normalized so that
Uðt0Þ ¼ I the 2n
 2n constant matrix S is simply

S ¼ Uðt0 þ 2pÞ: ð29Þ

The matrix S, which is nothing but a period-advance mapping, is referred to as a monodromy
matrix. Its eigenvalues si; i ¼ 1; 2; . . . ; 2n called the Floquet multipliers govern the stability of the
system so that the system is stable (non-resonant) if and only if mod(si)p1 for all i (where the
equal sign holds only when the multiplicity of si equals it s nullity).
The monodromy matrix method consists of obtaining the matrix S of Eq. (29) by a 2n passes

numerical integration of Eq. (26) and looking up its eigenvalues to assess stability of the system.
As the problem depends on the parameters z; o; b0; d and a; the method may be used as a scatter
plot method for obtaining stability charts on a plane having a selected couple of these parameters
as its components.

4.2. The generalized Bolotin method

Unlike the monodromy matrix method that is a scatter plot method; this method is a boundary
tracing method for obtaining stability charts on a two-dimensional parameter plane having the
dimensionless parametric frequency o as one of its components. The method is described in Ref.
[23] and will be summarized below. Eq. (25) may be written

€gðtÞ þ
1

o
Q_gðtÞ þ

1

o2
SðtÞgðtÞ ¼ 0; ð30Þ

where

Q ¼ zK4; SðtÞ ¼ K4
� bðtÞ2ðaAþ Bþ IÞ: ð31Þ
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Now, assume a single solution of form (28)

gðtÞ ¼ ert
X1

k¼�1

Dke
ikt; ð32Þ

where r (a Floquet exponent) corresponds to an eigenvalue of the matrix R and the periodic part
of the solution is represented by a complex Fourier series with unknown coefficient vectors Dk;
represent the 2p periodic matrix SðtÞ by its complex Fourier series expansion,

SðtÞ ¼
X2

p¼�2

Spe
ipt ð33Þ

where the complex Fourier coefficient matrices Sp; p ¼ �2;�1; 0; 1; 2 are easily obtained by
substituting the exact expansion

bðtÞ2 ¼ b20 1þ
d2

8


 �
þ i

d
2
ðeit � e�itÞ �

d
16

ðei2t þ e�i2tÞ

� �
ð34Þ

into Eq. (31), insert Eqs. (32) and (33) into Eq. (30) and collect equal powers of eit to obtain

ðrþ ikÞ ðrþ ikÞIþ
1

o
Q

� �
Dk þ

1

o2

X2
p¼�2

SpDq ¼ 0; k ¼ . . . ;�2;�1; 0; 1; 2; . . . ; q ¼ k � p: ð35Þ

Eq. (35) constitutes an infinite system of homogeneous algebraic equations for the unknown
vectors Dk: This system may conveniently be written in a hyper-matrix/vector form as

r2Iþ r E0 þ
1

o
E


 �
þ F0 þ

1

o
F1 þ

1

o2
F2


 �� �
D ¼ 0; ð36Þ

where D is an infinite hyper-vector defined as D ¼ f. . . ;DT
�2;D

T
�1;D

T
0 ;D

T
1 ;D

T
2 ; . . . g

T; I is the
infinite dimensional unit matrix and Ei; Fi’s are infinite dimensional hyper-matrices made up of
2n
 2n sub-matrices given by

E
k;q
0 ¼ 2ikIdkq; E

k;q
1 ¼ Qdkq; F

k;q
0 ¼ �k2Idkq; F

k;q
1 ¼ ikQdkq; F

k;q
2 ¼ Sp; ð37Þ

where dkq is the Kronecker delta and the superscripts k and q refer to the hyper-row and column
indices. In order Eq. (30) to admit a non-trivial solution of form (32), the determinant of the
coefficients’ matrix of Eq. (36) must vanish

det r2Iþ r E0 þ
1

o
E1


 �
þ F0 þ

1

o
F1 þ

1

o2
F2


 �� �
¼ 0: ð38Þ

This equation can be used to calculate the o values corresponding to stability boundaries
provided that the value of the Floquet exponent r on those boundaries is known. It is customary
to differentiate between three kinds of resonances and thereof of stability boundaries. These are
harmonic, sub-harmonic and combination resonances. It is known that on harmonic and sub-
harmonic resonance boundaries a certain sth exponent takes, respectively, the values rs ¼ 0 and
rs ¼ i=2; while for a non-canonical system such as the one considered here, on a combination
resonance boundary a certain pair ðrs; rtÞ; sat of Floquet exponents take values so that rs þ rt ¼

0 [23]. Whence, substituting r ¼ 0 into Eq. (38), one has for harmonic parametric resonance
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boundaries

det F0 þ
1

o
F1 þ

1

o2
F2

� �
¼ 0 ð39Þ

and substituting r ¼ i=2 one has for sub-harmonic parametric resonance boundaries

det F0 þ
i

2
E0 �

1

4
I

� �
þ

1

o
F1 þ

i

2
E1

� �
þ

1

o2
F2

� �
¼ 0; ð40Þ

while for combination resonance boundaries, first linearize the matrix polynomial of Eq. (38),
which is a monic matrix polynomial of second degree in r; to obtain the Hill’s determinant of the
problem

det U0 þ
1

o
U1 þ

1

o2
U2

� �
� rI

� �
¼ 0; ð41Þ

where

U0 ¼
�E0 �F0

I 0

� �
; U1 ¼

�E1 �F1

0 0

� �
; U2 ¼

0 �F2

0 0

� �
: ð42Þ

Then introduce the bialternate sum matrices BðUiÞof the matrices Ui; which have the property
of having as eigenvalues, the sums of the eigenvalues of the argument matrix taken in pairs [27]
(see Ref. [27] or [23] for the construction of these matrices) and write as a condition for rs þ rt ¼

0;

det BðU0Þ þ
1

o
BðU1Þ þ

1

o2
BðU2Þ

� �
¼ 0 ð43Þ

for combination resonance boundaries. o values corresponding to stability boundaries can be
calculated from Eqs. (39), (40) and (43) by solving an eigenvalue analysis problem. To this end,
note that all the three equations are of the form

det M0 þ
1

o
M1 þ

1

o2
M2

� �
¼ 0 ð44Þ

thus, involving matrix polynomials of second degree in 1=o: Multiplying by o2 and linearizing,
one may write

det
�M�1

0 M1 �M�1
0 M2

I 0

" #
� oI

" #
¼ 0 ð45Þ

whenever M0 is invertible. When this is not the case, first put 1=o ¼ 1= �oþ 1=d (where 1=d is a
scalar not equalling a proper value of the matrix polynomial in question) into Eq. (43) and solve
Eq. (44) with

�M0 ¼M0 þ
1

d
M1 þ

1

d2
M2; �M1 ¼M1 þ

1

2d
M2; �M2 ¼M2 ð46Þ

for �o; and then calculate o as o ¼ d �o=ðdþ �oÞ:
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As a note on the implementation of the above-described method, it should be noted that all the
o values calculated through Eqs. (39), (40) and (43) are not admissible. One has to eliminate those
o values that are not real numbers, and those corresponding to unconverged ðrs; rtÞ pairs or to
pairs whose imaginary parts violate the inequality � 1

2
oImðrs;tÞo1

2
: The first condition that

follows from obvious physical considerations applies to any of problems (39), (40) and (43), and is
implemented with no additional effort. But the second condition that is ultimately related to the
redundant and periodic (i periodic in r) nature of the Hill’s determinant of Eq. (41) applies only to
problem (43) and its implementation requires the corresponding r values to be calculated through
Eq. (41).
5. Numerical examples

This section is devoted to dynamic stability analysis examples. The results will be presented in
the form of stability charts constructed on various parameter planes. The o2b0; o2a and o2d
planes will be considered for this purpose so as to give an idea on the effect of these four system
parameters on the stability. In all of the numerical examples the only remaining system parameter
z will be set to z ¼ 0:0001: Thus, almost undamped systems will be considered. Each stability chart
will be worked out twice; once using the generalized Bolotin method, and once the monodromy
matrix method. This will provide a verification of the results obtained and will enable us to
compare the faculties of the considered methods. In the generalized Bolotin method, the matrix
dimensions depend on the number n of the considered terms in the Galerkin series of Eq. (9) and
the truncation number K of the Fourier series of Eq. (32). These dimensions are Z1 ¼ 2nð2K þ 1Þ
for the determination problems of harmonic and sub-harmonic parametric resonance boundaries
(Eqs. (39) and (40)) and Z2 ¼ Z1ðZ1 � 1Þ for that of combination resonance boundaries (Eq. (43)).
In the numerical examples n=5, K=10 (Z1 ¼ 210) are taken in problems (39) and (40) and n=3,
K=3 (Z2 ¼ 1722) in problem (43). The method is implemented by using a special FORTRAN
code developed for this purpose. On the other hand, in the monodromy matrix method, the
numerical burden depends directly on n. This value is set to n=3 in the numerical examples and
the method is implemented by using the MATLAB package.
Before proceeding to the presentation of the obtained stability charts, a discussion on their

expected features will be in order. It is known that the locations of the unstable parameter zones
(resonance regions) on these charts depend on the natural frequencies of the system. Specifically, if
the o-axis corresponds to vanishing parametric excitation and if no damping is present, the so-
called kth order harmonic and sub-harmonic parametric resonance regions related to the ith
vibration mode will emanate from, respectively, the points

oH
ik ¼

m2i
k
; oS

ik ¼
2m2i

ð2k � 1Þ
; k ¼ 1; 2; . . . ð47Þ

of the o-axis while the kth order sum or difference type combination resonance regions of the ith
and jth modes emanating from

oC�
ijk ¼

m2j � m2i
k

; j4i: ð48Þ
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But for the considered rotating beam problem, it is known from the content of Section 3.1 that
in the constant speed case the dimensionless natural frequencies of the system depend on the
dimensionless eccentricity a and the square of the dimensionless rotation speed b0 (see Eq. (16)).
Furthermore, it is clear from Eq. (34) that, in the fluctuating speed case the effective average
squared speed is

b20eff ¼ b20 1þ
d2

8


 �
: ð49Þ

Thus, one concludes that the natural frequencies of the fluctuating speed system will be mi ¼

miða;b0; dÞ; that is, they will depend on a; b0 and d and therefore so will the locations of the
resonance regions.
On the other hand, it is known from the content of Section 3.2 that an inward-oriented beam

may suffer loss of static stability for certain combinations of the system parameters and that the
boundaries delimiting the unstable parameter region can be calculated, for the constant speed
case, from an equation relating a to the square of the rotation speed (see Eqs. (18) and (19)). In
view of Eq. (49) one concludes that, in the fluctuating speed case this equation should be
understood as f ða;b0; dÞ ¼ 0:Whether a so calculated statically unstable zone will subsist or not in
the fluctuating speed case is an interesting question to be considered in a sequel.
As a first example, the stability of an inward-oriented beam with a ¼ �0:4; d ¼ 0:5 (an

exaggerated speed fluctuation) and z ¼ 0:0001 is considered and the results are presented in the
form of stability charts constructed on the o2b0 parameter plane in Figs. 5a–c. The chart of Fig.
5a is obtained by using the generalized Bolotin method and that of Fig. 5c by using the
monodromy matrix method. Fig. 5b is simply a blow-up from Fig. 5a. Fig. 5d, on the other hand,
presents some results obtained from undamped, constant speed analysis. Plotted on this figure are
some functions of the squared dimensionless natural frequencies mi; which, according to Eqs. (47)
and (48) are expected to locate the first order resonance regions related to the first two modes, and
the static buckling limit of the first mode. The functions related to the natural frequencies are
calculated from Eq. (16) with n=10 where b20eff is substituted from Eq. (49) for b20: The static
stability limit is calculated from Eq. (19) with n=10 where again b20eff is substituted for b

2
0: The so-

calculated critical value of b0 is b0 ¼ 5:163: (Note that Eq. (20) could also be used for this
purpose. The equation would give b20eff ¼ 5:249 and using Eq. (49) one would obtain b0 ¼ 5:169:)
An inspection of these figures leads to the following conclusions: (i) Results of the two stability

analysis methods compare well to each other. The obtained results are therefore reliable. The
monodromy matrix method is simple and straightforward but as it has to check all the surface of
the parameter plane point by point through a grid-like procedure it is very time consuming. This is
especially true in the cases where narrow regions exist making it necessary for high-frequency
grids to be used. On the other hand, the generalized Bolotin method has the advantage of stepping
only one axis of the parameter plane and is very quick in solving problems (39) and (40) but the
elimination procedure involved in problem (43) is time consuming and its programming requires
experience. Let one note that, in generating the stability charts with the monodromy matrix
method, the authors often had to refer to the results of the generalized Bolotin method to capture
the narrow bands of instability. (ii) The results imported from constant speed analysis and given
in Fig. 5d are very instructive. It can be seen that the plotted frequency functions not only point to
the emanation points of the related resonance zones but also determine their paths. Furthermore,
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Fig. 5. Dynamic stability analysis: effect of rotation speed, inward-oriented beam; a ¼ �0:4; d ¼ 0:5 (a, b, generalized
Bolotin method; c, monodromy matrix method; d, results from constant speed analysis).
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the static buckling region of this figure also subsists in the stability charts with only small
differences. These features make of this figure something more than it is; it can be viewed as the
skeleton of a dynamic stability chart. (iii) The differences of the static buckling zone appearing on
Figs. 5a and c from that of Fig. 5d are such that some parameter regions that would be unstable in
the absence of parametric excitation have become stable in its presence. Such a region is visible,
for example, in the range 3ooo10: This points to a stabilizing effect of the parametric excitation
as encountered in the well-known example of the inverted pendulum. On the other hand, a
number of resonance regions are visible in Figs. 5a and c. The most pronounced ones are those
emanating from oS

11; oS
21 and oCþ

121 (see Eqs. (47) and (48)). Notice that no difference type
combination resonance region is obtained in this problem. An inspection of Fig. 5b shows that the
oH
11 region and higher order harmonic and sub-harmonic parametric resonance regions do also

exist and form a sequence of gradually diminishing width zones.
The next example considers the stability of an outward-oriented beam with a ¼ 0:4; d ¼ 0:5 and

z ¼ 0:0001: Figs. 6a and b present stability charts obtained via, respectively, the generalized
Bolotin method and the monodromy matrix method and Fig. 6c presents the results obtained
from undamped, constant speed analysis. These results will not be elaborated on here because
almost all of the comments about those of the above example also hold for the present example.
An obvious exception is that loss of static stability is not in question for the present beam, which is
oriented outward.
Third, the authors consider the stability of a beam with b0 ¼ 4 (a speed higher than the

fundamental frequency of the stationary beam), d ¼ 0:5 and z ¼ 0:0001 and give stability charts
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constructed on the o2a parameter plane in Figs. 7a–c. Fig. 7d presents the results obtained from
constant speed analysis. The charts of Figs. 7a and b are obtained via the generalized Bolotin
method and that of Fig. 7c via the monodromy matrix method. As a negative a value corresponds
to an inward–oriented beam, loss of static stability is expected to occur below a certain critical
value of a in the range ao0: This value is calculated from Eq. (18), with n=10 and where b20eff is
substituted from Eq. (49) for b20; to be a ¼ �0:596: (Note that one could also use Eq. (21) to
obtain a ¼ �0:594:) The corresponding buckling zone is shown in Fig. 7d where certain frequency
curves are also plotted as calculated from Eq. (16) with n=10 and where b20eff is substituted for b

2
0:

Again a detailed discussion on the obtained results is omitted because this would be to a large
extent a repetition of that given for the first example, but it is reiterated that the most pronounced
instability zones are those emanating from oS

11; o
S
21 and oCþ

121 ; and a stabilizing effect of the
parametric excitation is visible in the range 3ooo10:
The fourth example considers the stability of an inward-oriented beam with a ¼ �0:4; b0 ¼ 5;

and z ¼ 0:0001: The results are presented in the form of stability charts constructed on the o2d
parameter plane in Figs. 8a–c, and some results imported from constant speed analysis are
Fig. 6. Dynamic stability analysis: effect of rotation speed, outward-oriented beam; a ¼ 0:4; d ¼ 0:5 (a, generalized

Bolotin method; b, monodromy matrix method; c, results from constant speed analysis).
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Fig. 7. Dynamic stability analysis: effect of eccentricity; b0 ¼ 4; d ¼ 0:5 (a, b, generalized Bolotin method; c,

monodromy matrix method; d, results from constant speed analysis).
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presented in Fig. 8d. To obtain the buckling limit appearing in Fig. 8d, first b20eff is calculated from
Eq. (19) with n=10 to be b20eff ¼ 27:490 and then d is calculated from Eq. (49) as d ¼

ð8ðb20eff=b
2
0 � 1ÞÞ1=2 ¼ 0:893: (Note that a similar calculation using Eq. (20) instead of Eq. (19) gives

the same result for d:) The most important features of the obtained figures may be summarized as
follows: (i) The stabilizing effect of the parametric excitation is very clearly observed in this
example, especially in the vicinity of o ¼ 6: (ii) A larger range of o is considered in this example,
and as a result, the fundamental sum type 1–3 combination resonance region oCþ

131 has also
appeared on the stability charts. It is seen that this zone is a pronounced one like oS

11; o
S
21 and oCþ

121

zones.
As a last example, an outward-oriented beam with a ¼ 0:4; b0 ¼ 5; and z ¼ 0:0001 is considered

and the results are presented in Figs. 9a–c. An inspection of these figures shows that along with
the bold instability zones oS

11; o
S
21 and oCþ

121 ; the zone o
Cþ
131 is also partially visible at the right-hand

side of the Figs. 9a and b. Also, a number of higher order resonance zones are spread out
throughout the considered parameter plane.
Before closing this section, a few words about the parameter values used in the numerical

examples will be in order. In all the numerical examples exceptionally high values are set to
at least one of the parameters b0 and d: This enabled highlighting of the essential features of the
dynamic stability analysis problem of rotating beams with fluctuating speed. Numerical
experiments have shown that when both the dimensionless rotation speed b0 and the speed
fluctuation factor d are realistically low, all the dynamic instability zones reduce to very narrow
bands or disappear at all.
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Fig. 8. Dynamic stability analysis: effect of speed fluctuation coefficient, inward-oriented beam; a ¼ �0:4; b0 ¼ 5 (a, b,

generalized Bolotin method; c, monodromy matrix method; d, results from constant speed analysis).
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6. Conclusions

Dynamic stability of rotating beams eccentrically clamped to a shaft with fluctuating speed is
studied via both the generalized Bolotin and monodromy matrix methods.
The constant speed rotation problem is also reviewed and its reflections onto the fluctuating

speed problem are underlined.
Along with its expected dynamic destabilizing effect, it is shown that a speed fluctuation may

also have a stabilizing effect on statically unstable inward-oriented beams.
Although the driving shafts of the rotating blades (beams) are not allowed to undergo a

substantial speed fluctuation in practice, such a situation may arise as a result of the torsional
flexibility of the shaft. Therefore, it may be supposed that the outcomes of this study may also be
useful in paving the way through the understanding of the coupled shaft torsional and blade
bending vibrations of rotors.
Appendix A

The dimensionless natural frequencies of a stationary cantilever are the roots of the
transcendental equation

1þ cos l cosh l ¼ 0: ðA:1Þ
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Fig. 9. Dynamic stability analysis: effect of speed fluctuation coefficient, outward-oriented beam; a ¼ 0:4; b ¼ 5 (a,

generalized Bolotin method; b, monodromy matrix method; c, results from constant speed analysis).
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The first five of them are calculated as

l1 ¼ 1:87510407;

l2 ¼ 4:69409113;

l3 ¼ 7:85475744;

l4 ¼ 10:99554073;

l5 ¼ 14:13716839: ðA:2Þ
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Thus, according to Eq. (13) one has for n=5

A ¼

�1:57087819

0:42232039 �8:64714269 symmetric

1:07208483 �1:89005471 �24:95211331

0:87313772 3:64338461 �8:33828978 �51:45910508

0:76232572 3:06280535 7:14108671 �19:01912840 �87:79232739

2
6666664

3
7777775
; ðA:3Þ

B ¼

�1:19333637

0:68585528 �6:47822486 symmetric

0:79237922 �0:16940788 �17:85951988

0:54641327 2:91185111 �3:27427206 �36:05538833

0:45407544 1:88916672 6:15441659 �8:57015737 �60:80107624

2
6666664

3
7777775
; ðA:4Þ

c ¼ f 0:78299176 0:4339359 0:2544253 0:18189802 0:14147084 gT; ðA:5Þ

d ¼ f 0:56882574 0:09076679 0:03241637 0:01654234 0:01000703 gT: ðA:6Þ
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